首页> 外文OA文献 >Convergence estimates for multigrid algorithms with SSC smoothers and applications to overlapping domain decomposition
【2h】

Convergence estimates for multigrid algorithms with SSC smoothers and applications to overlapping domain decomposition

机译:具有ssC平滑器的多重网格算法的收敛估计   应用于重叠域分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we study convergence estimates for a multigrid algorithm withsmoothers of successive subspace correction (SSC) type, applied to symmetricelliptic PDEs. First, we revisit a general convergence analysis on a class ofmultigrid algorithms in a fairly general setting, where no regularityassumptions are made on the solution. In this framework, we are able toexplicitly highlight the dependence of the multigrid error bound on the numberof smoothing steps. For the case of no regularity assumptions, this representsa new addition to the existing theory. Then, we analyze successive subspacecorrection smoothing schemes for a set of uniform and local refinementapplications with either nested or non-nested overlapping subdomains. For theseapplications, we explicitly derive bounds for the multigrid error, and identifysufficient conditions for these bounds to be independent of the number ofmultigrid levels. For the local refinement applications, finite element gridswith arbitrary hanging nodes configurations are considered. The analysis ofthese smoothing schemes is cast within the far-reaching multiplicative Schwarzframework.
机译:在本文中,我们研究了适用于对称椭圆PDE的具有连续子空间校正(SSC)类型的平滑器的多网格算法的收敛估计。首先,我们在相当笼统的环境中重新审视一类多网格算法的一般收敛性分析,其中对解决方案不做任何规则性假设。在此框架中,我们能够明确地强调多网格误差范围对平滑步骤数的依赖性。对于没有规律性假设的情况,这是对现有理论的新补充。然后,我们分析了具有嵌套或非嵌套重叠子域的一组统一和局部优化应用程序的连续子空间校正平滑方案。对于这些应用程序,我们显式导出了多重网格错误的界限,并确定了这些界限的充分条件,这些条件与多重网格级别的数量无关。对于局部优化应用,考虑具有任意悬挂节点配置的有限元网格。这些平滑方案的分析是在影响深远的乘法Schwarz框架中进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号